Getting Started
Getting HEIR
Using a pre-built nightly binary
HEIR releases a nightly binary for Linux x86-64. This is intended for testing compiler passes and not for production use.
wget https://github.com/google/heir/releases/download/nightly/heir-opt
chmod +x heir-opt
./heir-opt --help
Then you can run the examples below, replacing bazel run //tools:heir-opt --
with ./heir-opt
. HEIR also publishes heir-translate
and heir-lsp
in the
same way.
Via pip
We publish a python package heir_py that
includes the heir-opt
and heir-translate
binaries.
python -m venv venv
source venv/bin/activate
pip install heir_py
heir-opt --help
heir-translate --help
Building From Source
Prerequisites
- Git
- A C++ compiler and linker (clang and
lld or a recent version of
gcc
). - Bazel via bazelisk. The precise
Bazel version used is in
.bazelversion
in the repository root.
Detailed Instructions
The first two requirements are frequently pre-installed or can be installed via the system package manager. For example, on Ubuntu, these can be installed withsudo apt-get update && sudo apt-get install clang lld
You can download the latest Bazelisk release, e.g., for linux-amd64 (see the Bazelisk Release Page for a list of available binaries):
wget -c https://github.com/bazelbuild/bazelisk/releases/latest/download/bazelisk-linux-amd64
mv bazelisk-linux-amd64 bazel
chmod +x bazel
You will then likely want to move bazel
to a location on your PATH, or add its
location to your PATH, e.g.:
mkdir -p ~/bin
echo 'export PATH=$PATH:~/bin' >> ~/.bashrc
mv bazel ~/bin/bazel
Note that on linux systems, your OS user must not be root
as bazel
might
refuse to work if run as root.
On macOS, you can install bazelisk
via Homebrew.
Clone and build the project
You can clone and build HEIR from the terminal as described below. Please see Development for information on IDE configuration if you want to use an IDE to build HEIR.
git clone git@github.com:google/heir.git && cd heir
bazel build @heir//tools:heir-opt
Some HEIR passes require Yosys as a dependency (--yosys-optimizer
), which
itself adds many transitive dependencies that may not build properly on all
systems. If you would like to skip Yosys and ABC compilation, use the following
build setting:
bazel build --//:enable_yosys=0 --build_tag_filters=-yosys @heir//tools:heir-opt
Adding the following to .bazelrc
in the HEIR project root will make this the
default behavior
common --//:enable_yosys=0
common --build_tag_filters=-yosys
Optional: Run the tests
bazel test @heir//...
Using HEIR
Run the dot-product
example
The dot-product
program computes the dot product of two length-8 vectors of
16-bit integers (i16
in MLIR parlance). This example will showcase the OpenFHE
backend by manually calling the relevant compiler passes and setting up a C++
harness to call into the HEIR-generated functions.
The input program is in tests/Examples/common/dot_product_8.mlir
. Support for
standard input languages like C
and C++
are currently experimental at best,
but eventually we would use an MLIR-based tool to convert an input language to
MLIR like in that file. The program is below:
func.func @dot_product(%arg0: tensor<8xi16> {secret.secret}, %arg1: tensor<8xi16> {secret.secret}) -> i16 {
%c0 = arith.constant 0 : index
%c0_si16 = arith.constant 0 : i16
%0 = affine.for %arg2 = 0 to 8 iter_args(%iter = %c0_si16) -> (i16) {
%1 = tensor.extract %arg0[%arg2] : tensor<8xi16>
%2 = tensor.extract %arg1[%arg2] : tensor<8xi16>
%3 = arith.muli %1, %2 : i16
%4 = arith.addi %iter, %3 : i16
affine.yield %4 : i16
}
return %0 : i16
}
For an introduction to MLIR syntax, see the official docs or this blog post.
Now we run the heir-opt
command to optimize and compile the program. If you
fetched a pre-built binary instead of building from source, then all commands
below should have bazel run //tools:heir-opt --
replaced with heir-opt
, and
similarly for heir-translate
.
bazel run //tools:heir-opt -- \
--mlir-to-bgv='ciphertext-degree=8'\
--scheme-to-openfhe='entry-function=dot_product' \
$PWD/tests/Examples/common/dot_product_8.mlir > output.mlir
This produces a file in the openfhe
exit dialect (part of HEIR).
!Z1005037682689_i64_ = !mod_arith.int<1005037682689 : i64>
!Z1032955396097_i64_ = !mod_arith.int<1032955396097 : i64>
!Z1095233372161_i64_ = !mod_arith.int<1095233372161 : i64>
#polynomial_evaluation_encoding = #lwe.polynomial_evaluation_encoding<cleartext_start = 16, cleartext_bitwidth = 16>
!rns_L0_ = !rns.rns<!Z1095233372161_i64_>
!rns_L1_ = !rns.rns<!Z1095233372161_i64_, !Z1032955396097_i64_>
!rns_L2_ = !rns.rns<!Z1095233372161_i64_, !Z1032955396097_i64_, !Z1005037682689_i64_>
#ring_rns_L0_1_x8_ = #polynomial.ring<coefficientType = !rns_L0_, polynomialModulus = <1 + x**8>>
#ring_rns_L1_1_x8_ = #polynomial.ring<coefficientType = !rns_L1_, polynomialModulus = <1 + x**8>>
#ring_rns_L2_1_x8_ = #polynomial.ring<coefficientType = !rns_L2_, polynomialModulus = <1 + x**8>>
!rlwe_pt_L0_ = !lwe.rlwe_plaintext<encoding = #polynomial_evaluation_encoding, ring = #ring_rns_L0_1_x8_, underlying_type = i16>
!rlwe_pt_L1_ = !lwe.rlwe_plaintext<encoding = #polynomial_evaluation_encoding, ring = #ring_rns_L1_1_x8_, underlying_type = tensor<8xi16>>
!rlwe_pt_L2_ = !lwe.rlwe_plaintext<encoding = #polynomial_evaluation_encoding, ring = #ring_rns_L2_1_x8_, underlying_type = tensor<8xi16>>
#rlwe_params_L0_ = #lwe.rlwe_params<ring = #ring_rns_L0_1_x8_>
#rlwe_params_L1_ = #lwe.rlwe_params<ring = #ring_rns_L1_1_x8_>
#rlwe_params_L2_ = #lwe.rlwe_params<ring = #ring_rns_L2_1_x8_>
#rlwe_params_L2_D3_ = #lwe.rlwe_params<dimension = 3, ring = #ring_rns_L2_1_x8_>
!rlwe_ct_L0_ = !lwe.rlwe_ciphertext<encoding = #polynomial_evaluation_encoding, rlwe_params = #rlwe_params_L0_, underlying_type = i16>
!rlwe_ct_L1_ = !lwe.rlwe_ciphertext<encoding = #polynomial_evaluation_encoding, rlwe_params = #rlwe_params_L1_, underlying_type = tensor<8xi16>>
!rlwe_ct_L1_1 = !lwe.rlwe_ciphertext<encoding = #polynomial_evaluation_encoding, rlwe_params = #rlwe_params_L1_, underlying_type = i16>
!rlwe_ct_L2_ = !lwe.rlwe_ciphertext<encoding = #polynomial_evaluation_encoding, rlwe_params = #rlwe_params_L2_, underlying_type = tensor<8xi16>>
!rlwe_ct_L2_D3_ = !lwe.rlwe_ciphertext<encoding = #polynomial_evaluation_encoding, rlwe_params = #rlwe_params_L2_D3_, underlying_type = tensor<8xi16>>
module {
func.func @dot_product(%arg0: !openfhe.crypto_context, %arg1: !rlwe_ct_L2_, %arg2: !rlwe_ct_L2_) -> !rlwe_ct_L0_ {
%cst = arith.constant dense<[0, 0, 0, 0, 0, 0, 0, 1]> : tensor<8xi64>
%0 = openfhe.mul_no_relin %arg0, %arg1, %arg2 : (!openfhe.crypto_context, !rlwe_ct_L2_, !rlwe_ct_L2_) -> !rlwe_ct_L2_D3_
%1 = openfhe.relin %arg0, %0 : (!openfhe.crypto_context, !rlwe_ct_L2_D3_) -> !rlwe_ct_L2_
%2 = openfhe.rot %arg0, %1 {index = 4 : index} : (!openfhe.crypto_context, !rlwe_ct_L2_) -> !rlwe_ct_L2_
%3 = openfhe.add %arg0, %1, %2 : (!openfhe.crypto_context, !rlwe_ct_L2_, !rlwe_ct_L2_) -> !rlwe_ct_L2_
%4 = openfhe.rot %arg0, %3 {index = 2 : index} : (!openfhe.crypto_context, !rlwe_ct_L2_) -> !rlwe_ct_L2_
%5 = openfhe.add %arg0, %3, %4 : (!openfhe.crypto_context, !rlwe_ct_L2_, !rlwe_ct_L2_) -> !rlwe_ct_L2_
%6 = openfhe.rot %arg0, %5 {index = 1 : index} : (!openfhe.crypto_context, !rlwe_ct_L2_) -> !rlwe_ct_L2_
%7 = openfhe.add %arg0, %5, %6 : (!openfhe.crypto_context, !rlwe_ct_L2_, !rlwe_ct_L2_) -> !rlwe_ct_L2_
%8 = openfhe.mod_reduce %arg0, %7 : (!openfhe.crypto_context, !rlwe_ct_L2_) -> !rlwe_ct_L1_
%9 = openfhe.make_packed_plaintext %arg0, %cst : (!openfhe.crypto_context, tensor<8xi64>) -> !rlwe_pt_L1_
%10 = openfhe.mul_plain %arg0, %8, %9 : (!openfhe.crypto_context, !rlwe_ct_L1_, !rlwe_pt_L1_) -> !rlwe_ct_L1_
%11 = openfhe.rot %arg0, %10 {index = 7 : index} : (!openfhe.crypto_context, !rlwe_ct_L1_) -> !rlwe_ct_L1_
%12 = lwe.reinterpret_application_data %11 : !rlwe_ct_L1_ to !rlwe_ct_L1_1
%13 = openfhe.mod_reduce %arg0, %12 : (!openfhe.crypto_context, !rlwe_ct_L1_1) -> !rlwe_ct_L0_
return %13 : !rlwe_ct_L0_
}
func.func @dot_product__encrypt__arg0(%arg0: !openfhe.crypto_context, %arg1: tensor<8xi16>, %arg2: !openfhe.public_key) -> !rlwe_ct_L2_ {
...
}
func.func @dot_product__encrypt__arg1(%arg0: !openfhe.crypto_context, %arg1: tensor<8xi16>, %arg2: !openfhe.public_key) -> !rlwe_ct_L2_ {
...
}
func.func @dot_product__decrypt__result0(%arg0: !openfhe.crypto_context, %arg1: !rlwe_ct_L0_, %arg2: !openfhe.private_key) -> i16 {
...
}
func.func @dot_product__generate_crypto_context() -> !openfhe.crypto_context {
...
}
func.func @dot_product__configure_crypto_context(%arg0: !openfhe.crypto_context, %arg1: !openfhe.private_key) -> !openfhe.crypto_context {
...
}
}
Next, we use the heir-translate
tool to run code generation for the OpenFHE
pke
API.
bazel run //tools:heir-translate -- --emit-openfhe-pke-header --openfhe-include-type=source-relative $PWD/output.mlir > heir_output.h
bazel run //tools:heir-translate -- --emit-openfhe-pke --openfhe-include-type=source-relative $PWD/output.mlir > heir_output.cpp
The openfhe-include-type
indicates which include path for OpenFHE is used. It
has three possible values: install-relative
, source-relative
and embedded
.
In this example we use source-relative
as we are compiling against an
(unoptimized) OpenFHE managed by bazel in HEIR source. To compile against an
installed (and possibly optimized) OpenFHE, you could use install-relative
and
compile it on your own. Or you could just put the generated file in OpenFHE
source directory src/pke/examples
and let OpenFHE find and compile it for you
with the embedded
option.
The results:
// heir_output.h
#include "src/pke/include/openfhe.h" // from @openfhe
using namespace lbcrypto;
using CiphertextT = ConstCiphertext<DCRTPoly>;
using CCParamsT = CCParams<CryptoContextBGVRNS>;
using CryptoContextT = CryptoContext<DCRTPoly>;
using EvalKeyT = EvalKey<DCRTPoly>;
using PlaintextT = Plaintext;
using PrivateKeyT = PrivateKey<DCRTPoly>;
using PublicKeyT = PublicKey<DCRTPoly>;
CiphertextT dot_product(CryptoContextT v0, CiphertextT v1, CiphertextT v2);
CiphertextT dot_product__encrypt__arg0(CryptoContextT v18, std::vector<int16_t> v19, PublicKeyT v20);
CiphertextT dot_product__encrypt__arg1(CryptoContextT v24, std::vector<int16_t> v25, PublicKeyT v26);
int16_t dot_product__decrypt__result0(CryptoContextT v30, CiphertextT v31, PrivateKeyT v32);
CryptoContextT dot_product__generate_crypto_context();
CryptoContextT dot_product__configure_crypto_context(CryptoContextT v37, PrivateKeyT v38);
// heir_output.cpp
#include "src/pke/include/openfhe.h" // from @openfhe
using namespace lbcrypto;
using CiphertextT = ConstCiphertext<DCRTPoly>;
using CryptoContextT = CryptoContext<DCRTPoly>;
using EvalKeyT = EvalKey<DCRTPoly>;
using PlaintextT = Plaintext;
using PrivateKeyT = PrivateKey<DCRTPoly>;
using PublicKeyT = PublicKey<DCRTPoly>;
CiphertextT dot_product(CryptoContextT v0, CiphertextT v1, CiphertextT v2) {
std::vector<int64_t> v3 = {0, 0, 0, 0, 0, 0, 0, 1};
const auto& v4 = v0->EvalMultNoRelin(v1, v2);
const auto& v5 = v0->Relinearize(v4);
const auto& v6 = v0->EvalRotate(v5, 4);
const auto& v7 = v0->EvalAdd(v5, v6);
const auto& v8 = v0->EvalRotate(v7, 2);
const auto& v9 = v0->EvalAdd(v7, v8);
const auto& v10 = v0->EvalRotate(v9, 1);
const auto& v11 = v0->EvalAdd(v9, v10);
const auto& v12 = v0->ModReduce(v11);
auto v3_filled_n = v0->GetCryptoParameters()->GetElementParams()->GetRingDimension() / 2;
auto v3_filled = v3;
v3_filled.clear();
v3_filled.reserve(v3_filled_n);
for (auto i = 0; i < v3_filled_n; ++i) {
v3_filled.push_back(v3[i % v3.size()]);
}
const auto& v13 = v0->MakePackedPlaintext(v3_filled);
const auto& v14 = v0->EvalMult(v12, v13);
const auto& v15 = v0->EvalRotate(v14, 7);
const auto& v16 = v15;
const auto& v17 = v0->ModReduce(v16);
return v17;
}
CiphertextT dot_product__encrypt__arg0(CryptoContextT v24, std::vector<int16_t> v25, PublicKeyT v26) {
...
}
CiphertextT dot_product__encrypt__arg1(CryptoContextT v29, std::vector<int16_t> v30, PublicKeyT v31) {
...
}
int16_t dot_product__decrypt__result0(CryptoContextT v34, CiphertextT v35, PrivateKeyT v36) {
...
}
CryptoContextT dot_product__generate_crypto_context() {
...
}
CryptoContextT dot_product__configure_crypto_context(CryptoContextT v37, PrivateKeyT v38) {
...
}
At this point we can compile the program as we would a normal OpenFHE program. Note that the above two files just contain the compiled function and encryption/decryption helpers, and does not include any code that provides specific inputs or calls these functions.
Next we’ll create a harness that provides sample inputs, encrypts them, runs the compiled function, and decrypts the result. Once you have the generated header and cpp files, you can do this with any build system. We will use bazel for consistency.
Create a file called BUILD
in the same directory as the header and cpp files
above, with the following contents:
# A library build target that encapsulates the HEIR-generated code.
cc_library(
name = "dot_product_codegen",
srcs = ["heir_output.cpp"],
hdrs = ["heir_output.h"],
deps = ["@openfhe//:pke"],
)
# An executable build target that contains your main function and links
# against the above.
cc_binary(
name = "dot_product_main",
srcs = ["dot_product_main.cpp"],
deps = [
":dot_product_codegen",
"@openfhe//:pke",
"@openfhe//:core",
],
)
Where dot_product_main.cpp
is a new file containing
#include <cstdint>
#include <vector>
#include "src/pke/include/openfhe.h" // from @openfhe
#include "heir_output.h"
int main(int argc, char *argv[]) {
CryptoContext<DCRTPoly> cryptoContext = dot_product__generate_crypto_context();
KeyPair<DCRTPoly> keyPair;
keyPair = cryptoContext->KeyGen();
cryptoContext = dot_product__configure_crypto_context(cryptoContext, keyPair.secretKey);
std::vector<int16_t> arg0 = {1, 2, 3, 4, 5, 6, 7, 8};
std::vector<int16_t> arg1 = {2, 3, 4, 5, 6, 7, 8, 9};
int64_t expected = 240;
auto arg0Encrypted =
dot_product__encrypt__arg0(cryptoContext, arg0, keyPair.publicKey);
auto arg1Encrypted =
dot_product__encrypt__arg1(cryptoContext, arg1, keyPair.publicKey);
auto outputEncrypted =
dot_product(cryptoContext, arg0Encrypted, arg1Encrypted);
auto actual = dot_product__decrypt__result0(cryptoContext, outputEncrypted,
keyPair.secretKey);
std::cout << "Expected: " << expected << "\n";
std::cout << "Actual: " << actual << "\n";
return 0;
}
Then run and show the results:
$ bazel run dot_product_main
Expected: 240
Actual: 240
If you fetched a pre-built binary instead of building from source, then you will
have to use your build system of choice to compile the generated files. If you
use heir_py
’s heir.compile
decorator with debug=True
, then the compilation
commands will be printed to stdout so you can see how to compile the generated
code manually.
Optional: Run a custom heir-opt
pipeline
HEIR comes with two central binaries, heir-opt
for running optimization passes
and dialect conversions, and heir-translate
for backend code generation. To
see the list of available passes in each one, run the binary with --help
:
bazel run //tools:heir-opt -- --help
bazel run //tools:heir-translate -- --help
Once you’ve chosen a pass or --pass-pipeline
to run, execute it on the desired
file. For example, you can run a test file through heir-opt
to see its output.
Note that when the binary is run via bazel
, you must pass absolute paths to
input files. You can also access the underlying binary at
bazel-bin/tools/heir-opt
, provided it has already been built.
bazel run //tools:heir-opt -- \
--secret-to-cggi -cse \
$PWD/tests/Dialect/Secret/Conversions/secret_to_cggi/add_one.mlir
To convert an existing lit test to a bazel run
command for manual tweaking and
introspection (e.g., adding --debug
or --mlir-print-ir-after-all
to see how
he IR changes with each pass), use python scripts/lit_to_bazel.py
.
# after pip installing requirements-dev.txt
python scripts/lit_to_bazel.py tests/simd/box_blur_64x64.mlir
Which outputs
bazel run --noallow_analysis_cache_discard //tools:heir-opt -- \
--secretize --wrap-generic --canonicalize --cse --full-loop-unroll \
--insert-rotate --cse --canonicalize --collapse-insertion-chains \
--canonicalize --cse /path/to/heir/tests/simd/box_blur_64x64.mlir
Optional: Graphviz visualization of the IR
Getting a visualization of the IR during optimization/transformation might help you understand what is going on more easily.
Still taking the dot_product_8.mlir
as an example:
bazel run --ui_event_filters=-info,-debug,-warning,-stderr,-stdout --noshow_progress --logging=0 //tools:heir-opt -- --wrap-generic --heir-simd-vectorizer $PWD/tests/Examples/common/dot_product_8.mlir --view-op-graph 2> dot_product_8.dot
dot -Tpdf dot_product_8.dot > dot_product_8.pdf
# open pdf in your favorite pdf viewer
The diagram is also shown below. It demonstrates that the HEIR SIMD vectorizer
would vectorize the dot-product program (tensor<8xi16>
) then use
rotate-and-reduce technique to compute the sum.