TensorExt
’tensor_ext’ Dialect
The tensor_ext
dialect contains operations on plaintext tensors that
correspond to the computation model of certain FHE schemes, but are
unlikely to be upstreamed to MLIR due to their specificity to FHE.
TensorExt attributes
SIMDPackingAttr
An attribute describing the SIMD packing of a tensor.
Syntax:
#tensor_ext.simd_packing<
::mlir::DenseI64ArrayAttr, # in
::mlir::DenseI64ArrayAttr, # padding
::mlir::DenseI64ArrayAttr, # out
int64_t # padding_value
>
This attribute is used as the encoding attribute on a tensor. It describes the transformations that were applied to an input tensor to pack it into the given tensor.
The in
attribute describes the shape of the original tensor.
The following transformations are applied to the input tensor.
Padding is applied first. The
padding
attribute is an array with the same size as the input tensor shape. Padding is applied at the end of the array using thepadding_value
attribute (default zero). The result after zero padding should be a power of two.The padded result is replicated or split to fill the output tensor shape.
For example,
#packing = #tensor_ext.simd_packing<
in = [7],
padding = [1],
padding_value = 0,
out = [16],
>
may be used on a tensor type like
tensor<1x16xi32, #packing>
If the original tensor had values [1, 2, 3, 4, 5, 6, 7]
then a tensor with
this attribute contains the data [1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0]
.
Parameters:
Parameter | C++ type | Description |
---|---|---|
in | ::mlir::DenseI64ArrayAttr | |
padding | ::mlir::DenseI64ArrayAttr | |
out | ::mlir::DenseI64ArrayAttr | |
padding_value | int64_t |
TensorExt ops
tensor_ext.convert_layout
(heir::tensor_ext::ConvertLayoutOp)
Convert from one layout to another.
Syntax:
operation ::= `tensor_ext.convert_layout` operands attr-dict `:` type($output)
This op represents the conversion of a tensor from one packed layout to another. This is implemented via a “shift network” of ciphertext rotations, plaintext masks (ciphertext-plaintext multiplications), and additions.
This op is inserted by layout selection passes.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
from_layout | ::mlir::AffineMapAttr | An Attribute containing an AffineMap object |
to_layout | ::mlir::AffineMapAttr | An Attribute containing an AffineMap object |
Operands:
Operand | Description |
---|---|
tensor | ranked tensor of any type values |
Results:
Result | Description |
---|---|
output | ranked tensor of any type values |
tensor_ext.rotate
(heir::tensor_ext::RotateOp)
Rotate a tensor some number of indices left.
Syntax:
operation ::= `tensor_ext.rotate` operands attr-dict `:` qualified(type($tensor)) `,` type($shift)
This op represents a left-rotation of a tensor by given number of indices. Negative shift values are interpreted as right-rotations.
This corresponds to the rotate
operation in arithmetic FHE schemes like
BGV.
This operation’s current behavior allows rotating multi-dimensional tensors by rotating along the tensor’s only non-unit dimension. This assumes the tensor is packed along the non-unit dimension.
// In the future, the op will be adjusted to support rotations of general // multi-dimensional tensors with a vector of rotation indices for each // dimension. The lowering will implement the correct operations to rotate // the tensor along the indices given its packing.
Examples:
%0 = ... : tensor<16xi32>
%c7 = arith.constant 7 : i32
%1 = tensor_ext.rotate %0, %c7 : tensor<16xi32>, i32
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Description |
---|---|
tensor | tensor of any type values |
shift | signless-integer-like |
Results:
Result | Description |
---|---|
output | tensor of any type values |