ModArith
ModArith attributes
AffineMapAttr
An Attribute containing an AffineMap object
Syntax:
affine-map-attribute ::= `affine_map` `<` affine-map `>`
Examples:
affine_map<(d0) -> (d0)>
affine_map<(d0, d1, d2) -> (d0, d1)>
Parameters:
Parameter | C++ type | Description |
---|---|---|
value | AffineMap |
ArrayAttr
A collection of other Attribute values
Syntax:
array-attribute ::= `[` (attribute-value (`,` attribute-value)*)? `]`
An array attribute is an attribute that represents a collection of attribute values.
Examples:
[]
[10, i32]
[affine_map<(d0, d1, d2) -> (d0, d1)>, i32, "string attribute"]
Parameters:
Parameter | C++ type | Description |
---|---|---|
value | ::llvm::ArrayRef<Attribute> |
DenseArrayAttr
A dense array of integer or floating point elements.
A dense array attribute is an attribute that represents a dense array of
primitive element types. Contrary to DenseIntOrFPElementsAttr this is a
flat unidimensional array which does not have a storage optimization for
splat. This allows to expose the raw array through a C++ API as
ArrayRef<T>
for compatible types. The element type must be bool or an
integer or float whose bitwidth is a multiple of 8. Bool elements are stored
as bytes.
This is the base class attribute. Access to C++ types is intended to be
managed through the subclasses DenseI8ArrayAttr
, DenseI16ArrayAttr
,
DenseI32ArrayAttr
, DenseI64ArrayAttr
, DenseF32ArrayAttr
,
and DenseF64ArrayAttr
.
Syntax:
dense-array-attribute ::= `array` `<` (integer-type | float-type)
(`:` tensor-literal)? `>`
Examples:
array<i8>
array<i32: 10, 42>
array<f64: 42., 12.>
When a specific subclass is used as argument of an operation, the declarative assembly will omit the type and print directly:
[1, 2, 3]
Parameters:
Parameter | C++ type | Description |
---|---|---|
elementType | Type | |
size | int64_t | |
rawData | ::llvm::ArrayRef<char> | 64-bit aligned storage for dense array elements |
DenseIntOrFPElementsAttr
An Attribute containing a dense multi-dimensional array of integer or floating-point values
Syntax:
tensor-literal ::= integer-literal | float-literal | bool-literal | [] | [tensor-literal (, tensor-literal)* ]
dense-intorfloat-elements-attribute ::= `dense` `<` tensor-literal `>` `:`
( tensor-type | vector-type )
A dense int-or-float elements attribute is an elements attribute containing
a densely packed vector or tensor of integer or floating-point values. The
element type of this attribute is required to be either an IntegerType
or
a FloatType
.
Examples:
// A splat tensor of integer values.
dense<10> : tensor<2xi32>
// A tensor of 2 float32 elements.
dense<[10.0, 11.0]> : tensor<2xf32>
Parameters:
Parameter | C++ type | Description |
---|---|---|
type | ShapedType | |
rawData | ArrayRef<char> |
DenseResourceElementsAttr
An Attribute containing a dense multi-dimensional array backed by a resource
Syntax:
dense-resource-elements-attribute ::=
`dense_resource` `<` resource-handle `>` `:` shaped-type
A dense resource elements attribute is an elements attribute backed by a
handle to a builtin dialect resource containing a densely packed array of
values. This class provides the low-level attribute, which should only be
interacted with in very generic terms, actual access to the underlying
resource data is intended to be managed through one of the subclasses, such
as; DenseBoolResourceElementsAttr
, DenseUI64ResourceElementsAttr
,
DenseI32ResourceElementsAttr
, DenseF32ResourceElementsAttr
,
DenseF64ResourceElementsAttr
, etc.
Examples:
"example.user_op"() {attr = dense_resource<blob1> : tensor<3xi64> } : () -> ()
{-#
dialect_resources: {
builtin: {
blob1: "0x08000000010000000000000002000000000000000300000000000000"
}
}
#-}
Parameters:
Parameter | C++ type | Description |
---|---|---|
type | ShapedType | |
rawHandle | DenseResourceElementsHandle |
DenseStringElementsAttr
An Attribute containing a dense multi-dimensional array of strings
Syntax:
dense-string-elements-attribute ::= `dense` `<` attribute-value `>` `:`
( tensor-type | vector-type )
A dense string elements attribute is an elements attribute containing a densely packed vector or tensor of string values. There are no restrictions placed on the element type of this attribute, enabling the use of dialect specific string types.
Examples:
// A splat tensor of strings.
dense<"example"> : tensor<2x!foo.string>
// A tensor of 2 string elements.
dense<["example1", "example2"]> : tensor<2x!foo.string>
Parameters:
Parameter | C++ type | Description |
---|---|---|
type | ShapedType | |
value | ArrayRef<StringRef> |
DictionaryAttr
An dictionary of named Attribute values
Syntax:
dictionary-attribute ::= `{` (attribute-entry (`,` attribute-entry)*)? `}`
A dictionary attribute is an attribute that represents a sorted collection of named attribute values. The elements are sorted by name, and each name must be unique within the collection.
Examples:
{}
{attr_name = "string attribute"}
{int_attr = 10, "string attr name" = "string attribute"}
Parameters:
Parameter | C++ type | Description |
---|---|---|
value | ::llvm::ArrayRef<NamedAttribute> |
FloatAttr
An Attribute containing a floating-point value
Syntax:
float-attribute ::= (float-literal (`:` float-type)?)
| (hexadecimal-literal `:` float-type)
A float attribute is a literal attribute that represents a floating point value of the specified float type. It can be represented in the hexadecimal form where the hexadecimal value is interpreted as bits of the underlying binary representation. This form is useful for representing infinity and NaN floating point values. To avoid confusion with integer attributes, hexadecimal literals must be followed by a float type to define a float attribute.
Examples:
42.0 // float attribute defaults to f64 type
42.0 : f32 // float attribute of f32 type
0x7C00 : f16 // positive infinity
0x7CFF : f16 // NaN (one of possible values)
42 : f32 // Error: expected integer type
Parameters:
Parameter | C++ type | Description |
---|---|---|
type | ::mlir::Type | |
value | ::llvm::APFloat |
IntegerAttr
An Attribute containing a integer value
Syntax:
integer-attribute ::= (integer-literal ( `:` (index-type | integer-type) )?)
| `true` | `false`
An integer attribute is a literal attribute that represents an integral
value of the specified integer or index type. i1
integer attributes are
treated as boolean
attributes, and use a unique assembly format of either
true
or false
depending on the value. The default type for non-boolean
integer attributes, if a type is not specified, is signless 64-bit integer.
Examples:
10 : i32
10 // : i64 is implied here.
true // A bool, i.e. i1, value.
false // A bool, i.e. i1, value.
Parameters:
Parameter | C++ type | Description |
---|---|---|
type | ::mlir::Type | |
value | APInt |
IntegerSetAttr
An Attribute containing an IntegerSet object
Syntax:
integer-set-attribute ::= `affine_set` `<` integer-set `>`
Examples:
affine_set<(d0) : (d0 - 2 >= 0)>
Parameters:
Parameter | C++ type | Description |
---|---|---|
value | IntegerSet |
OpaqueAttr
An opaque representation of another Attribute
Syntax:
opaque-attribute ::= dialect-namespace `<` attr-data `>`
Opaque attributes represent attributes of non-registered dialects. These are attribute represented in their raw string form, and can only usefully be tested for attribute equality.
Examples:
#dialect<"opaque attribute data">
Parameters:
Parameter | C++ type | Description |
---|---|---|
dialectNamespace | StringAttr | |
attrData | ::llvm::StringRef | |
type | ::mlir::Type |
SparseElementsAttr
An opaque representation of a multi-dimensional array
Syntax:
sparse-elements-attribute ::= `sparse` `<` attribute-value `,`
attribute-value `>` `:`
( tensor-type | vector-type )
A sparse elements attribute is an elements attribute that represents a sparse vector or tensor object. This is where very few of the elements are non-zero.
The attribute uses COO (coordinate list) encoding to represent the sparse elements of the elements attribute. The indices are stored via a 2-D tensor of 64-bit integer elements with shape [N, ndims], which specifies the indices of the elements in the sparse tensor that contains non-zero values. The element values are stored via a 1-D tensor with shape [N], that supplies the corresponding values for the indices.
Example:
sparse<[[0, 0], [1, 2]], [1, 5]> : tensor<3x4xi32>
// This represents the following tensor:
/// [[1, 0, 0, 0],
/// [0, 0, 5, 0],
/// [0, 0, 0, 0]]
Parameters:
Parameter | C++ type | Description |
---|---|---|
type | ShapedType | |
indices | DenseIntElementsAttr | |
values | DenseElementsAttr |
StringAttr
An Attribute containing a string
Syntax:
string-attribute ::= string-literal (`:` type)?
A string attribute is an attribute that represents a string literal value.
Examples:
"An important string"
"string with a type" : !dialect.string
Parameters:
Parameter | C++ type | Description |
---|---|---|
value | ::llvm::StringRef | |
type | ::mlir::Type |
SymbolRefAttr
An Attribute containing a symbolic reference to an Operation
Syntax:
symbol-ref-attribute ::= symbol-ref-id (`::` symbol-ref-id)*
A symbol reference attribute is a literal attribute that represents a named
reference to an operation that is nested within an operation with the
OpTrait::SymbolTable
trait. As such, this reference is given meaning by
the nearest parent operation containing the OpTrait::SymbolTable
trait. It
may optionally contain a set of nested references that further resolve to a
symbol nested within a different symbol table.
Rationale: Identifying accesses to global data is critical to enabling efficient multi-threaded compilation. Restricting global data access to occur through symbols and limiting the places that can legally hold a symbol reference simplifies reasoning about these data accesses.
See Symbols And SymbolTables
for more
information.
Examples:
@flat_reference
@parent_reference::@nested_reference
Parameters:
Parameter | C++ type | Description |
---|---|---|
rootReference | StringAttr | |
nestedReferences | ::llvm::ArrayRef<FlatSymbolRefAttr> |
TypeAttr
An Attribute containing a Type
Syntax:
type-attribute ::= type
A type attribute is an attribute that represents a type object.
Examples:
i32
!dialect.type
Parameters:
Parameter | C++ type | Description |
---|---|---|
value | Type |
UnitAttr
An Attribute value of unit
type
Syntax:
unit-attribute ::= `unit`
A unit attribute is an attribute that represents a value of unit
type. The
unit
type allows only one value forming a singleton set. This attribute
value is used to represent attributes that only have meaning from their
existence.
One example of such an attribute could be the swift.self
attribute. This
attribute indicates that a function parameter is the self/context parameter.
It could be represented as a boolean attribute(true or
false), but a value of false doesn’t really bring any value. The parameter
either is the self/context or it isn’t.
Examples:
// A unit attribute defined with the `unit` value specifier.
func.func @verbose_form() attributes {dialectName.unitAttr = unit}
// A unit attribute in an attribute dictionary can also be defined without
// the value specifier.
func.func @simple_form() attributes {dialectName.unitAttr}
ModArithAttr
a typed mod_arith attribute
Syntax:
#mod_arith.int<
::mlir::heir::mod_arith::ModArithType, # type
mlir::IntegerAttr # value
>
Example:
#attr = 123:i32
#attr_verbose = #mod_arith.int<123:i32>
Parameters:
Parameter | C++ type | Description |
---|---|---|
type | ::mlir::heir::mod_arith::ModArithType | |
value | mlir::IntegerAttr |
StridedLayoutAttr
An Attribute representing a strided layout of a shaped type
Syntax:
strided-layout-attribute ::= `strided` `<` `[` stride-list `]`
(`,` `offset` `:` dimension)? `>`
stride-list ::= /*empty*/
| dimension (`,` dimension)*
dimension ::= decimal-literal | `?`
A strided layout attribute captures layout information of the memref type in
the canonical form. Specifically, it contains a list of strides, one for
each dimension. A stride is the number of elements in the linear storage
one must step over to reflect an increment in the given dimension. For
example, a MxN
row-major contiguous shaped type would have the strides
[N, 1]
. The layout attribute also contains the offset from the base
pointer of the shaped type to the first effectively accessed element,
expressed in terms of the number of contiguously stored elements.
Strides must be positive and the offset must be non-negative. Both the
strides and the offset may be dynamic, i.e. their value may not be known
at compile time. This is expressed as a ?
in the assembly syntax and as
ShapedType::kDynamic
in the code. Stride and offset values
must satisfy the constraints above at runtime, the behavior is undefined
otherwise.
See [Dialects/Builtin.md#memreftype](MemRef type) for more information.
Parameters:
Parameter | C++ type | Description |
---|---|---|
offset | int64_t | |
strides | ::llvm::ArrayRef<int64_t> | array of strides (64-bit integer) |
ModArith types
ModArithType
Integer type with modular arithmetic
Syntax:
!mod_arith.int<
::mlir::IntegerAttr # modulus
>
mod_arith.int<p>
represents an element of the ring of integers modulo $p$.
The modulus
attribute is the ring modulus, and mod_arith
operations lower to
arith
operations that produce results in the range [0, modulus)
, often called
the canonical representative.
modulus
is specified with an integer type suffix, for example,
mod_arith.int<65537 : i32>
. This corresponds to the storage type for the
modulus, and is i64
by default.
It is required that the underlying integer type should be larger than
twice the modulus (have one extra bit of storage space) to avoid signedness
issues. For example, when modulus == 2 ** 32 - 1
, the underlying type
for the modulus should be at least i33
, though i64
is a natural choice.
Passes may allow intermediate values that do not always produce a
canonical representative in [0, modulus)
. For example, if the machine storage
type is i64
, but the modulus
fits within an i32
, a lowering could
allow intermediate arithmetic values to grow to as large as an i64
before
reducing them. However, all passes must ensure that values used outside
the local scope (e.g., function return values or arguments to calls to linked
functions) are appropriately reduced to the canonical representative.
modulus
is the modulus the arithmetic working with.
Examples:
!Zp1 = !mod_arith.int<7> // implicitly being i64
!Zp2 = !mod_arith.int<65537 : i32>
!Zp3 = !mod_arith.int<536903681 : i64>
Parameters:
Parameter | C++ type | Description |
---|---|---|
modulus | ::mlir::IntegerAttr |
ModArith ops
mod_arith.add
(heir::mod_arith::AddOp)
Modular addition operation
Syntax:
operation ::= `mod_arith.add` operands attr-dict `:` type($output)
Computes modular addition.
Unless otherwise specified, the operation assumes both inputs are canonical representatives and guarantees the output being canonical representative.
Traits: AlwaysSpeculatableImplTrait
, Commutative
, Elementwise
, SameOperandsAndResultType
, Scalarizable
, Tensorizable
, Vectorizable
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Description |
---|---|
lhs | mod_arith-like |
rhs | mod_arith-like |
Results:
Result | Description |
---|---|
output | mod_arith-like |
mod_arith.barrett_reduce
(heir::mod_arith::BarrettReduceOp)
Compute the first step of the Barrett reduction.
Syntax:
operation ::= `mod_arith.barrett_reduce` operands attr-dict `:` qualified(type($input))
Let $q$ denote a statically known modulus and $b = 4^{w}$, where $w$ is the
smallest bit-width that contains the range $[0, q)$. The Barrett reduce
operation computes barret_reduce x = x - floor(x * floor(b / q) / b) * q
.
Given $0 <= x < q^2$, then this will compute $(x \mod q)$ or $(x \mod q) + q$.
Traits: SameOperandsAndResultType
Interfaces: InferTypeOpInterface
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
modulus | ::mlir::IntegerAttr | arbitrary integer attribute |
Operands:
Operand | Description |
---|---|
input | signless-integer-like |
Results:
Result | Description |
---|---|
output | signless-integer-like |
mod_arith.constant
(heir::mod_arith::ConstantOp)
Define a constant value via an attribute.
Example:
%0 = mod_arith.constant 123 : !mod_arith.int<65537:i32>
Traits: AlwaysSpeculatableImplTrait
, InferTypeOpAdaptor
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
value | ::mlir::heir::mod_arith::ModArithAttr | a typed mod_arith attribute |
Results:
Result | Description |
---|---|
output | Integer type with modular arithmetic |
mod_arith.encapsulate
(heir::mod_arith::EncapsulateOp)
Encapsulate an integer into a mod_arith type
Syntax:
operation ::= `mod_arith.encapsulate` operands attr-dict `:` type($input) `->` type($output)
mod_arith.encapsulate
converts the integer to be of mod_arith type.
It is required that the bitwidth of the input integer type is the same as that of the storage type of the output mod_arith type.
Examples:
mod_arith.encapsulate %c0 : i32 -> mod_arith.int<65537 : i32>
mod_arith.encapsulate %c1 : i64 -> mod_arith.int<65537>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, Scalarizable
, Tensorizable
, Vectorizable
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Description |
---|---|
input | signless-integer-like |
Results:
Result | Description |
---|---|
output | mod_arith-like |
mod_arith.extract
(heir::mod_arith::ExtractOp)
Extract the integer stored inside mod_arith type
Syntax:
operation ::= `mod_arith.extract` operands attr-dict `:` type($input) `->` type($output)
mod_arith.extract
extracts the integer inside the mod_arith type.
It is required that the bitwidth of the output integer type is the same as that of the storage type of the input mod_arith type.
Examples:
%m0 = mod_arith.encapsulate %c0 : i32 -> mod_arith.int<65537 : i32>
%m1 = mod_arith.encapsulate %c1 : i64 -> mod_arith.int<65537>
%c2 = mod_arith.extract %m0 : mod_arith.int<65537 : i32> -> i32
%c3 = mod_arith.extract %m1 : mod_arith.int<65537> -> i64
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, Scalarizable
, Tensorizable
, Vectorizable
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Description |
---|---|
input | mod_arith-like |
Results:
Result | Description |
---|---|
output | signless-integer-like |
mod_arith.mac
(heir::mod_arith::MacOp)
Modular multiplication-and-accumulation operation
Syntax:
operation ::= `mod_arith.mac` operands attr-dict `:` type($output)
mod_arith.mac x, y, z
computes $(x * y) + z$
Unless otherwise specified, the operation assumes all inputs are canonical representatives and guarantees the output being canonical representative.
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultType
, Scalarizable
, Tensorizable
, Vectorizable
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Description |
---|---|
lhs | mod_arith-like |
rhs | mod_arith-like |
acc | mod_arith-like |
Results:
Result | Description |
---|---|
output | mod_arith-like |
mod_arith.mul
(heir::mod_arith::MulOp)
Modular multiplication operation
Syntax:
operation ::= `mod_arith.mul` operands attr-dict `:` type($output)
Computes modular multiplication.
Unless otherwise specified, the operation assumes both inputs are canonical representatives and guarantees the output being canonical representative.
Traits: AlwaysSpeculatableImplTrait
, Commutative
, Elementwise
, SameOperandsAndResultType
, Scalarizable
, Tensorizable
, Vectorizable
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Description |
---|---|
lhs | mod_arith-like |
rhs | mod_arith-like |
Results:
Result | Description |
---|---|
output | mod_arith-like |
mod_arith.reduce
(heir::mod_arith::ReduceOp)
Reduce the mod arith type to its canonical representative
Syntax:
operation ::= `mod_arith.reduce` operands attr-dict `:` type($output)
mod_arith.reduce x
produces $y$, the canonical representative in $[0, q)$
such that $x \equiv y \mod q$.
Examples:
%c0 = arith.constant 65538 : i32
%m0 = mod_arith.encapsulate %c0 : i32 -> mod_arith.int<65537 : i32>
// mod_arith.extract %m0 produces 65538
%m1 = mod_arith.reduce %m0 : mod_arith.int<65537: i32>
// mod_arith.extract %m1 produces 1
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultType
, Scalarizable
, Tensorizable
, Vectorizable
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Description |
---|---|
input | mod_arith-like |
Results:
Result | Description |
---|---|
output | mod_arith-like |
mod_arith.subifge
(heir::mod_arith::SubIfGEOp)
Compute (x >= y) ? x - y : x.
Syntax:
operation ::= `mod_arith.subifge` operands attr-dict `:` qualified(type($output))
Traits: SameOperandsAndResultType
Interfaces: InferTypeOpInterface
Operands:
Operand | Description |
---|---|
lhs | signless-integer-like |
rhs | signless-integer-like |
Results:
Result | Description |
---|---|
output | signless-integer-like |
mod_arith.sub
(heir::mod_arith::SubOp)
Modular subtraction operation
Syntax:
operation ::= `mod_arith.sub` operands attr-dict `:` type($output)
Computes modular subtraction.
Unless otherwise specified, the operation assumes both inputs are canonical representatives and guarantees the output being canonical representative.
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultType
, Scalarizable
, Tensorizable
, Vectorizable
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Description |
---|---|
lhs | mod_arith-like |
rhs | mod_arith-like |
Results:
Result | Description |
---|---|
output | mod_arith-like |